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Vertical Interpolation of Height and Temperature for Model Input/Output

I. Introduction

Heights and temperatufes must be vertically interpolated since they are
not observed, reported, analyzed, forecasted, and verified all at the same
pressurés.. Since the accuracy of the interpolation can affect the overall
skill of the analysis/forecast syétem it is good to have some well-defined
principles and procedures in hand to perform ﬁhe interpolation. It is taken
as a Basic teﬁet that consistency is important in all procedures used. This
note will deal with both the basic principles»underlying the proposed vertical
interpolation method and thé derivation of a concrete set of accurate procedures.

The problem consists in goiﬁg from mandatory (and possibly significant)
level data to a model vertical coordinate and back with minimum error. The
fact that a forecast hés been performedvby'thermodel in the interum is

irrelevant.

I1. Baéic Principles

Derivations from a hydrostétic balance are not definable from radiosonde
observations becauée df reduction methods. The deviations can be considered
to have a normal distribution with zefﬁ-mean.vkiherefore, it is justified to
use the hydfostatic eéuation to relate temperature and height differences.
It can be written .

g dz = v(ercmﬂ/a = - RTHP (IT.1)

In integrated form i i ‘ | '

2HAZ PP ,
,-,}Ag:_—]{ d%:“}_af,b TP — (II.2)

It is also noted that since all NMC operational forecase models are

hydrostatic, hydrostatically consistent heights and temperatures provide



needed model input.‘_Fufthermore;~the reporﬁed heights are themselves obtained
from ther§d§9§§nd§5feports by hydroetatic'integration of the temperature field.

Model input is cuetomarily provided by input at mandatory levels only,
so that the height field inciﬁdes the influence of all temperatures, but not
vice versa. Therefore, we‘may regard the height field to be most representative
of the overall structure of the atmosphere. TFor these reasons, this note
will regard the height field to be of more fendamental nature than temepratures.
In esseﬁce, this means that all vertical interpolation will be interpolation
of the height field, with temperatures determined hydrostatically from it.

The weight of a column of air, expressed as height differences, is
related to the virﬁual'témperature of the air, not the dry air temperature.
Thus, the temperature in (II.1-2) is the virtual temperature. It is given
approximately by
Ty = (+0619)T ©(11.3)
where T, is the virtuval temperature, T is the temperature, and q is the
specific humidity. 1In all that follows, temperature will be used to mean
virtual temperature. It 1s noted that none of the NMC operational models
properly takes the effect of moisture iﬁto‘account for ipput and output.

This should be an area for future consideration.

One test of a vertical interpolation is that it should produce no errors
when going from,mandetory level heights to'a model with levels at the mandatory
pressures and back to mandatory levels. This requirement will eliminate some
schemes which may be good in an RMS sense but do not pay proper attention to
the discrete structure of the problem. Revefsibility and consistency are

principles which will guide the development of suitable interpolation schemes.



’III. Designvof a Method

There are a large number of methods that would meet the design criteria
set up in the last section. - They are limited, however, to methods which have
‘no error at the input levels, i.e., co-location polynomials are suitable, but
cubic splines are not. This note will consider only fairly simple forms——in
which the height varies quadratically with a wvertical variéble. The forms

examined are

. | 4
T : L p

varies linearly with (I11.1)
e ' mw
. 2

where one choiée on the left is taken with one choice on the right. Variables
have the usual definitidn.

The accuracy of an interpolation ‘scheme may be judged by the error in
going from mandatory lévelsrto'model structuré and back.i In this process it
is necessary to pay attention to the model structﬁre, including vertical
staggering of variables and required thermodynamic variablé. But it is not
needed to actually make a forecast. In fact, doing so would only‘add error.
It is also not necessary (indeed, it is not desirable) for the interpolatioﬁ
method to use the model's definition of fhe mid-layer coordinate (if it

exists).

IV. Linear. Equations
The next section will give the justification for using the method
presented in this section. It is -shown that the most accurate of the equations

(I11.1) is

Tocfgi@}’ o (1v.1)



The Appendices A-H will give the equations for all the 8 methods since they
may at times be useful. Here, only the equation fér (1v.1) will be considered,
Let the%fgmpgﬁatgﬁé’Variation oﬁer some pressure range be given by
T=T +b(P-P) o (IV.2)

where P = Inp. Substitution into the hydrostatic equation, (II.2) gives

PHAP
Az= - %ifp (5 +b(P-F)) dP

2 ) R : AP (1v.3)
=—S(F_pP)AP—- B2 /ptr 28 ) AP
5 (T 5 (P+5°)
solving for T gives
= = APy G Z
F=bP - b(PFE) — 7-:‘%? , (IV.4)

- Consider application of (IV.3-4) for input from mandatory level data. On
‘input to a numerical model, the heights are known. Also, the lapse rate may
be estimated between mandatory levels to give an estimate of b = dT/dlnp.

‘Therefore, (IV.4) gives the relationship between T and P. A natural choice

is
- T % %_‘52 (1v.5)
and _
IS=—” Py %;.f (1V.6)

Note‘that this choice giveS»a'usﬁalmform for the relationship between a "mean'
temperafure,'f; and the height difference‘andvalso eliminates the lapse rate

from the fdrms»fof'T and'f; A.Similr»proceduré~is followed in the Appendices
to find the relationship between the "mean" thermodynamic variable and "mean”
" coordinate for the other forms. Itbis sfreésed ﬁhat they can never be chosen

independently.



. Now, consider the interpolation of heights within a layer where (IV.2)
holds. Integration from the base of the layer at'(ZO,PO) to the 1n (pressure)

= P gives

-2 _ = 1.5V p_p}_ Rb Pe ] |
z =2, —§~[T~IQP)(P F) %—{P; )(P P.) (1V.7)

This formula can be used to provide model heights at given preséures. Details
of the actual procedure will be given later.

An equation is also needed to givé the.pressure at a known height. It
is used to find the surface’pressure for the model terrain height. Figure 1

shows the data arrangement.

Pq » 2,

. | ‘ e /}a(mnkwom/n)

b ‘ Z,

Figure 1. Data arrangement for solution for pressure at given height.

In this case

= Z2,-% B P,
Define 52 = 2-2,,8P=FP-F aud AP = A-F. ~ (1v.9)

Then the hydrostatic equation gives

Sz=-£ [_7‘:+ ‘é-(fp»fﬁp,)jzlf’ (1v.10)



Straight—-forward solution for &P gives
! _ r 2 k - Y ‘ )
5F=;{—(T+§Ar)t[(’r+%di’) ~2p % 52] Z} (1v.11)

But this form is unsuitable since b can be small. Instead, (Iv.10) is solved
by a different application of completion of squares (Shuman and Hovermale,

1968). - The result is

_ . Sz
“E(T+eaR)-J[E(T+5aP)] - 5282

5P

(Iv.12)

It has been stated that it is important to use the proper P with T.
Letting € (P) be the error in'F, then the error in the height difference for

‘a layer of In-pressure thickness AP is -
€(AZ) = SE LAP- 6‘(!5) | (IV.13)

For errors from using mean ln (pressure) based. upon p or & , the error in

height should be from less than a meter to several meters at high altitudes.

V. Determination of'Best‘Linear Lawu‘ 

| It is believed.that the fémperature 1aw‘(III.l) which best fits the
»atmosphefe'Will:also(be the best‘law to use for the Verticél interpolation.
This section examines the determination of that best fit. Mandatory level
data are used for the éastern U.S. for all feporting radiosonde stations and
all possible pressure levels, a linear interpolation is made between alternate
pressure levels. i;e., 1000 mb and 700 mb temperatures are interpolated to
850 mb; 850 and 500 mb‘temperatﬁres afe interpolated to 700 mb; etc. The
interpolated temperatures are compared‘with the reported temperatures and
mean error, RMS error and error frequency distributions are generated.

‘Figures 2 -9 -show the mean and RMS errors as a function of pressure‘for the 8



temperature laws. Those using'temperature‘(rather than potential temperature)
are all reasonably close and are best. The best overall is Te¢ lnp with Tec Z
a close second. The largest errors are near the tropopause and ground.

Figures 10-11 shoW the frequency distribution of the errors, averaged
with respect to pressure. Again, T aclnp'is shown té be most accurate. The
error pattern is skewed toward. positive values because of the positive erroré
near the tropopause and ground. All the methods using potential temperature,
on the other hand, have significant negative and positive errors. These

methods have extremely large RMS errors above 20 mb.

VI. Recommended Procedures

Figure 12 shows data arrangement for mandatory levels and both staggered
and unstaggered model structure. The method of’interpolafion will differ
somewhat for staggered and unstaggered modél structure. It will also differ
slightly between models using T and those usi‘ng € as the thermodynamic
variable.

Preparation for interpolation‘begins with solving for mean temperature
(T) or potential temperature (67) for the layers Between mandatory Ievels,
-using the appropriate form of fhe hydrostatic equation. The specification of the
temperature in each layér iS~completed by,specifyiﬁg b, the lapse rate. The
LFM analysis analyées températures as well‘as heights so that the lapse is
directly speéified. More usually, a temperature difference across two layers
needs td be used, where the temperatures héve been determined hydrostatically.
At this point, a distinction must‘be made between models with staggered and
unstaggered variébles in the vertical. However, in any case, the height
interpolation will be to model levels. (lLevels are defined to be constan;
sigma surfaces which bound léyers. Usually, the primary definition of sigma;

values is at levels.) The interpolation formulas are used.to integrate the
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height from the ground upward to each sigma-level. When parts of more than
one mandatory data layer are between two sigma-levels, then the temperature
profile appropriate to each part must be used.

A. Staggered grid

For staggered T (or € ) and Z, the interpolated level heights are used,
together with the model hydrostatic equation to obtain the model thermodynamic
variable. On output the model heights are first obtained from the model
thermodynamic variable and model form of the hydrostatic equation. Interpolation
from the mo&el heights to mandatory level heights is accomplished using
only‘interpolation forms tovdéfine mean temperature and mean layer pressure.

B. Unstaggered

In this case the model heights are in the middle of layers; but the
interpolation still bégins by interpolating heights to model levels. From
the level heights,‘determine’the layervtemeprature'by using the interpblation
form of the hydrostatic eqﬁation. If the wrong thermodynamic variable is
‘obtained (@ versus T), then use the interpolation?defined mean coordinate
to make the con?ersion. Model heights, in layers, are obtained wheﬁ needed
by using the model hydréstatic eqﬁation.

On output  the proCess.is reversed. First, the médel thermodynamic
variable is converted, if necessary, to the form used in the interpolation.
The interpolation—defined mean coordinate is used. Lapse rates are defined
and interpolation'forms are used to interpolate to mandatory levels. As on
input, the heights are obtained by integration of the temperature profile.

C. Determination of lapse rate

The effect of thé'lapse rate on the thickness of a layer is of second
order in 1n (pressure) (see IV.10). Therefore, the specification of the
lapse is not critipal, but the best estimate should be used. The data and

model structure will suggest the appropriate method. Figure 13 shows three
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methods presently used somewhere in NMC.codes. Figure 13a shows the easiest
situation. T ié determined (hydrostatically) from Z's and b's are determined
from the T's. Figure 13b shows the more usual situation where only Z's are
input. Then T's are obtained‘from the Z;s and the b's are obtained from the
T's by finite differences. In Figure 13¢c, p** is the tropopause level, 'so we
will want to extrapolate temperatures from beléw and above. As for Figure 13b,
Z's determine T's.

D. Vertical interpolation of residuals in the optimum interpolation
analysis

It will be shown in this section that the same procedure can be used for
vertical interpolation of .0/I height residuals as for‘the total height field.
First;'it will be shown that the hydrostatic equation is the same, and‘sécond
it will be shown that the temperature law for‘the‘residuals is the same as
 for the total field, but with the lapse rate determined by the residuals.

The hydrostatic equation is written (for a layer)

R — . R ' .
AZ = ~ 3 TA_F’ ‘ S (VI.1)

For an updated layer

Az 8z = -;; (T"'S:’:)AP | (VI.2)

The pressure thickness remains the same and the height increment SZL determines
the change in the mean temperatufe, § T. Subtracting (VI.1) from (VI.2)

gives the hydrostatic équatiqn for the residuals.

§z = ST AP | | (VI.3)

—_
Now, consider the temperature variation. Originally, it is assumed to be

T :?ff‘b(?-}-’-) | E " (VI.4)

with
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= = AP = 4T
T=-238F ,F=pP+5 and b=73 (VI.5)
After update
T+ST=(T+5T) +b'(P-F) (Le)
where - ‘
L = A(T+ST)

‘?“9 (VI.7)

Subtracting (VI.4) from (VI.6) gives the temperature law for the residuals
ST=5T +(bv-b)(P-P)

= ST+ g—gl—s—’p-(P‘l-’.)

(VI.8)

Equatibns (VI.3), (VI.8) show that the residuals follow the same equations as
the full fields, only the correct lapse rate must be used in (VI.8). - Therefore,
the methods recommended elsewhere‘in this note equally apply to the vertical
interpolation of 0fI analysis.residuals tb giveﬁ pressure levels.

E. SHUELL pressure. reduction

The SHUELL pressure reduction method is a combination of methods of F.
Shuman and J. Newell. It is described in Technical Procedures Bulletin No.
57. The méthods uses the assumption that temperature varies liﬁearly with
height. The uniqueness of the method lies in the way the mean layer temperéture
and lapse rate are specified. . The LFM and Spectral models use slightly
different formulations. The method as described here uses the equations of
Appendix D.. Refer to Figure 14 for notation. ‘In the LFM, the lﬁyer between
Z1 and Zg is the boundary layer; in the Spectral model, Zq and Zg are the
same height. |

First, define the mean temperature for the lowest sigma-layer used (Zj

to Zz).
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— r fI+A :
F = ,__2__.(22_2,) == - (VL.9)
where ‘ R
L= (2= 3 : ,
Pi ‘ v © (VI.10)
and [ = -.0065 deg/m is the standard atmosphere lapse rate. Next, extrapolate

temperature downward, with lapse rate N s to Zg and Z=0.
Ts =T, ~T(F -&s) (VI.11)
To=T~-I3Z | | (VI.12)

- Next, the lapse rate below ground is: specified to model the procedure
followed at observing stafions v(see‘ Bigelow, 1902). The lapsé rate is determined
from Tg and T,. = However, the'provisional value of T, from (VI.12) may be
changed first as vfollows‘:

1) If T,<290.66K, then no change to T,
2) If T,>290.66K, then T ,=290.66-.005%( T ,~290.66)>
3) If Tp>290.66K and Tg<290.66K, then T,=290.66K.

The iapse rate is calculated as

b=1s"Te
= (VI.13)
The mean layer (Z=0 to Zg) temperature and height are defined by
= _ _ b /143 |
To==Z 5‘,(,_/5 : (VI.14)
~ Rt |

- [P

/8= (VI.15)
Fumse
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If b=0, then

?M‘SL

Zmz*jﬁfw&vi‘l) (VI.

Otherwise

‘Emz(éi—’—)(:[—; ~bE,)) | (VI.

17)

18)

The equations used by the LFM and Spectral models are approximations to (VI.18).

The Spectral model equation is
gg‘-rs /f?"—(Ps /?M )
I-%b gj b (bs /Pm)

while the LFM uses (VI.17) with T, replaced by 1/2(Ty+Tg).

VII. Methods Used by Operational Models

(VI.

19)

A short sketch of the vertical interpolation used by the NMC models will

be listed. To a reasonable degree, the recommendations of this note are
already followed, ‘but no model has complete consistency.
A. LFM-INI (subroutine PTOSIG)

Surface pressure - interpolation to grbund height assumes T  Ilnp.

Heights at sigma-levels - interpolation assumes T o lnp. The same
form is used to get mandatory level heights on output.

Potential temperatures - generéily obtained by €,  form of hydro-

static equation from hei.ghts; but the lowest layer uses special technique
designed by J. Stackpole to uti‘lize‘ the surface temperature. The boundary
é is an interpolation between the surface temperéture and the first
mandatory level above, provided that Zs<2850,' The method"assumes T ¢€ 1np.
The T definition is implicit in the choice of & .

B. LFM-POST (subroutine SIGTOP)

layer

N :
Mid-layer ¥ - M= AF/K f1np. This is inconsistent and should be changed

to 7 (P).
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ey
Mid-layer pressure - p(#'). -See above,

Level temperatures — interpolated using T o lnp, but with extrapolation

to tropopause. (Method (c¢) ‘described in section VI.C.)

Level heights — by hydrostatic equation in &, # form.

Tropopause temperature — average of extrapolations from above and below.

A
FD pressures = the method uses 7 to define mid-layer and the assumption

" that @« % . (This is a bad method and should be changed.)

FD winds, potential temperatures — interpolated linearly with respect

to 7.

Mandatory level winds, relative humidity, temperatures — interpolated

~A
linearly with respect to 1lnp (but with mid-#" = # ). A standard lapse rate
of 6.5 x 10‘3'deg/m is used below the middle of the lowest layer. (The dew

point is calculated »éccording to the formula in Office Note 36.)

Mandatory levei heights‘ - intérpolated_ as‘suming' T o lnp. The lapse
rates are specified f‘r_om the level tet;lperatures (specific as discussed abov.e).
Tﬁe SHUELL press‘ure reduction téchnique ié uséd below ground. It uses ToeC Z
with specifiea lapse rates.

C. Spectral INI (subroutine PTOSIG)

Sigma—-level heights - interpolation assumes T e lnp.

Sigma~layer temperatures — solved from hydrostatic equation in T, 1np

form, using level heights. The P definition is implicit is the hydrostatic

form uses. Note! The level heights are not used by the model. They are

“only used to obtain the temperatures as described above.

Surface pressure (subroutine GETPS) - interpolated assuming T ec lnp.

D. Spectral POST (subroutine SIGTOM)

C e 2T . A
Mid-layer sigma - corresponds to 7= A®W/KAlnp.
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Level heights - solved from hydrostatic equation in T, 1np form.

A
Mid-layer 7 - 7.
Mid-layer Inp - ln of pressure corresponding to ¥ .

Mid-layer p — p (arithmetic mean) (not p(#”)).

Level temperatures - interpolation or eXtrapolation assuming T o€ lnp.

Level temperature (also RH, U, V, &) - linear interpolation with respect

to lnp.

Mandatory level heights — interpolation using T eclnp except below ground

where SHUELL technique is used.

Level temperatures - are recomputed using T. Flattery's subroutine LOWIMP

if any levels are below ground.
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Appendix A. Teaclnp

All the Appendices have the samé»form, each dealing with a different
temperature law. The parts are: | |

1. the temperature law

2. the hydrostatic equation, integrated through a layer'

3. the equation relating the mid~layer coordinate and mid-layer
temperature

4. ‘the equations for a reasonable choicé of mid-layer coordinate and
mid-layer temperature

5. the hydrostatic equation, integrated:through a partial layer, using
the choice for mid-layer coordinate and temperaturg

6. the method to obtain the pressure at a given height is presented

temperature law

T = 4 b(P.-T’) _ P = 1n (pressure) {(A.1)

hydrostatic equation for layer

Bz=-E(F-uP)ap- Bb(p, 8Py pp (a.2)

T,? equation

Solving (A.2) for T giﬁes

— s APy _ 9 AZ
T:bP-—-b(Pf'i—) R AP (A.3)

choice of'T;F
The following choice agrees with usual practice and eliminates b from

the expressions.

F=-9 D2
T ="k »p (A.4)
p=r+2f (A.5)
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hydrostatic equation for partial layer

Refer to Figure 15 for notation

== 2.- B (F-LPXP-R) - BE(ELE)(p )

pressure at given height

‘Refer to Figure 16 for notation

Sz

SP= — ' '
Y- = -
5§(T+§AP)‘1/[E§ (T+ %AP)}Z~%’SE

(A.16)

(A.17)
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Appendix B, Totp

temperature law

T=T+ b(p-P) | | (B.1)

hydrostatic equation for layer

Az ,-g(—’pby)z\? —~j§bAP - (Pzstnp) (B.2)

. -'f,_ﬁ equation

Solving (B.2) for T gives .

TooRE (P 4P

R AP (B.3)
choice for E,—ﬁ
One natural choice is
= . ~9 AZ ras before)
T R AP ( (B.4)
4 = Ay
AP (B.5)
hydrostatic equation for partial layer
ZE = fe - ?’(T—- bln)(P’Po)°§“b(P‘Pa) (B.6)
pressure at a given height
A numerical solution ~ﬁ1ust be used. One method follows. Let
¥ 49 :
P = Po"“g"'—?': (2“20) ' | ' (B.7)

and , ' ' ' B

: ,Pn = M (Pn) | (B.8)

Flz-2) +b(p" ¥.)
T -bp .

Pun: P, —

(B.9)

For b= .04 deg/mb this scheme converges to 8 decimal places in about 9 scans.
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Appendix C. Teedl

temperature law

T =T + k,(ﬁrﬂ-?i)

hydrostatic equation for layer

AZ = — -[T—bvr)AP -ﬁb“ﬂf

K9

T,p equation

Solving (C.2) for T gives

F - pF - 9AE _ b AT
T =bW-52A% ~ % BF

choice for'T;E

One natural choice for T, satisfying (C.3) is

= 9 4&%5
T=~%%r
= Aﬁ’ -

hydrostatic equation for partial layer

2=z R pper) — 2 (r-m)

pressure at a given height

The equation must be solved numerically. One method follows.

¥ -‘4?’12' Egifé;ii]

(1%0) (Po., ,’ Poo-’woo}mb

' €7
”+4
§F R(T-—bvr) [SE"

- (C.1)

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)

(C.7)

- (C.8)

(C.9)
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n+l i

p =8P + F, R (€.10)

10!”-!: M(Puﬂ) ‘ (C.11)

For b=10 deg the scheme c.onverges to 9 decimal places in about 5 scans.
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‘Appendix D. T eCZ

temperature law

T =7 4‘iﬁ(ii~§§)

hydrostatic equatlon for layer (b#0)

AZ=E-~Z+ {[T-l—b(&'-?) 1H'A”) | ‘ '7:} |

T,p equation (b#0)

Solving (D.2) for T gives
AZ
T =-b(z-% + )

where

g "

& = .Itilﬁié)

choice for T,p (b#0)

One natural choice is

z=z+4%

and then : ‘L‘
= _ _ bAz(1+
T = 2 ] —d

.IF b=0, then (D.2) becomes:
az=-LFap

giving .
AZ
AP

nj©

o
T~_—
P

- and the choice of Z is open. Certainly, (D.5) can still beused.

hydrostatic eqﬁation for partial layer
b#0

Z=2, +(i"—g——'-)[’f +b(z,-2)]

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)

(D;Za)

(D.3a)

(D.7)
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2=z, - 3@?(9—?.,)

preéssure at a given height

p=g, LEPC2-E)
: 7’j‘ ;EZSEE
=0 -

p=Po “)‘?‘—.F(Z‘fzo), "a:,éz,lp(P)

Probably (D.8a) should be used for a range of b near zero.

(D.7)

(D.8)

(D.8a)
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Appendix E. 8 cc inp .

‘temperature law

=8+ bl(P-P) ' (E.1)

hydrostatic equation for layer k

AZ

;C b ‘r - L(%ﬁdff)-l
32—’2-{1)"[,&‘,(1)’1—41)’9 &z‘r’]-t»Mf[ /- ]} (E.2)

& ,_I; equation

—

Solving (E.2) for & gives
- : | = @, (THAT A
G=-282 b fp P [ e (T e (TD)]]

. choice of 5,’;'?

One natural choice is

=~ __ 9 AZ : , ,
G = p A ' (E.4)

.and thus

P =~ +—1-‘:-—,&~ (%__A_".’).;.RL%{‘IT’;AW)

KAW (E.5)
hydrostatié equation for ‘partial layer
' ' Ty, : .
=12, —~—§R%[1r:, &(;ﬁ)) + (- m)ﬁw(e)] (E.6)

pressure at a given height

An interative solution is given below. Begin with

r'= 1);, -—CF‘%- (2-2Z,) -' (E.7)
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" Then use
_ . b L _ L]
oAyt glreelE) i) o (F)
- e o +b(F-P) =

Iteration with b=30 deg gives 9-place accuracy after about 6 scans.
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-Appendix F. 8aC p

temperature law -

6=8rblp-F)

hydrostatic equation for layer

. ~ = bPoo S
A= — -69-.2{9 ~bP)A1r-— Cpg P (K’i,)[kvfﬂﬂ’) K

b ,-I_’ equation

Solving (F.2) for 5 gives

545 +b{F - Ja (g oram -

choice of 9;’F

il

A natural choice is

g - — 9 A&
e = ’CPA’lT'

K1 KH
4= 1”” \[ (1r+A1r) R —m * ]

K-H

hydrostatié equation for partial‘ layer

KH

K+l
-7 K

KH J}’

‘ K+
—g‘f(é'—-b];)[f-m) —C“lﬂ’-‘fﬂ ,i,)(ﬂ”" ™ )

pressure at a given height

A numerical solution is needed. One possibility follows.

17'": 173* %(E-Za)

ey T — cP (2-%,) +(K+l) bP‘,‘, [(’H’ ") KH

g

-bp

(F.1)

(F.2)

(F.3)

| (F.4)

(F.5)

(F.6)

(F.7)

(F.8)

With b=.06 deg/mb this scheéeme takes about 13 scanes to converge to‘9—place

accuracy.
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Appendix G. g n

temperature law

0=8+ b(n-T)

hydrostatic equation for layer

Az—-g‘1[9 bwr)Mr —Eb(ﬂ'+ AT

9, T equation

Solving (G.2) for ggives

g =- Eg; +b[1r’ (7+55) |

choice of 9, L

A nmatural choice is

<10
>

Mg 3w

o=~

m

+

T

h

hydrostatic equation for partial layer

2=z, — L[(7-b7) + b (TFT) (o)

- pressure at a given height

s
" -sm-m]+Ie- b(‘—m)] +—3-—Sz}”-
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Appendix H. @ z

temperature law

@=0 # b(e-Z)

hydrostatic equation for layer

Az=E-2 +i,'—{/z~[§+£(z -2)] - 5} |
where
5=z (- MM'“)
8, Z equation

- AZ
= b(&-—Z - ‘l—:"ﬁ) '

choice of 5,?2'

One reasonable choice is

z
z--E-f—A

giving

hydrostatic equation for partial layer

zZ=2,— g’i[(é-—bf‘r) + b[”';m),](ﬂ“ﬂ’o)

pressure at a given height

& +b(z-Z)
g. + b(Zo"z.)

= Tro"'é%—*ﬁw[

vig:?“,’.r/x

(H.1)

(H.2)

(H.3)

(H.4)

(H.5)

(H.6)

(H.7)

(H.8)

(H.9)
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12.

13.

14.

15.

16.

Data
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Figures

arrangement for solution for pressure at given height.

Mean and RMS errors as function of pressure for the 8 temeprature laws.

Frequency distribution of errors, averaged with respect to pressure

(4 temperature laws in each figure).

Data

arrangement for manadatory levels and both stagered and unstaggered

model structure.

Data

Data

Data

Data

arrangement for determination of lapse rates.
arrangement for SHUELL pressure reduction.
structure for layer.

structure for partial layer.
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